Skip to main content

Author: Alison Doody

Small is beautiful

Can Africa’s smallholder farmers adopt and reap the benefits of farm mechanization? The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) team set out in 2013 to test this proposition.  With the project nearing closure, the International Maize and Wheat Improvement Center (CIMMYT) project leader Frédéric Baudron believes the answer is yes.

“We have demonstrated that small-scale mechanization is a pathway to sustainable intensification and rural transformation, and can have positive gender outcomes as well,” he explained.

Here are some of the key lessons learned along the way, according to the people involved.

1. Appropriate mechanization is essential

With many farms in Africa measuring no more than two hectares, FACASI focused on bringing two-wheel tractors to regions where smallholdings dominate, especially in Zimbabwe and Ethiopia. For most small farmers, conventional farm machinery is out of reach due to its size, costs, and the skills needed to operate it. The typical path to mechanization would be for farmers to consolidate their farms, which could lead to social and environmental upheaval. Instead, the FACASI team scaled-down the equipment to suit the local context.

FACASI has obtained evidence to dispel commonly held myths about farm power in smallholder farming systems,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR).

2. Test, develop and adapt technologies… together 

From start to finish, the project tested and developed technologies in collaboration with farmers, local manufacturers, engineers, extension agents. Together, they adapted and refined small-scale machinery used in other parts of the world to accommodate the uneven fields and hard soils of African smallholder farms. This co-construction of technologies helped cultivate a stronger sense of local ownership and buy-in.

“We gained many valuable insights by continuously refining technologies in the context of efficiency, farmer preference and needs,” said Bisrat Getnet, FACASI national project coordinator in Ethiopia, and director of the Agricultural Engineering Research Department in the Ethiopian Institute of Agricultural Research (EIAR).

Jane Mautsa and her husband operating the sheller. (Photo: Shiela Chikulo/CIMMYT)

3. Make it useful 

The basic two-wheel tractor is a highly flexible and adaptable technology, which can be used to mechanize a range of on-farm tasks throughout the seasons. With the right attachments, the tractor makes short work of sowing, weeding, harvesting, shelling, water pumping, threshing and transportation.

“This multi-functional feature helps to ensure the tractor is useful at all stages of the annual farming cycle, and helps make it profitable, offsetting costs,” said Raymond Nazare, FACASI national project coordinator in Zimbabwe and lecturer at the Soil and Engineering Department of the University of Zimbabwe.

4. Less pain, more profit

Reducing the unnecessary drudgery of smallholder farming can be financially rewarding and open new doors. Mechanization can save farmers the costs of hiring additional labor, and vastly reduce the time and effort of many post-harvest tasks — often done by women — such as transport, shelling and grinding. FACASI researchers demonstrated the potential for mechanization to reduce this onerous labor, allowing women to channel their time and energy into other activities.

5. New, inclusive rural business models

New technologies need reliable supply chains and affordable support services. The FACASI team supported leasing and equipment-sharing schemes, trained people to operate and maintain machinery, and encouraged individuals and groups to become service providers. These efforts often focused on giving youth and women new business opportunities.

“The project demonstrated that small mechanization can create profitable employment,” said Tirivangani Koza, of Zimbabwe’s Ministry of Lands, Agriculture, Water and Rural Resettlement.

“Women and youth are using small mechanization to grow profitable businesses,” said Alice Woodhead in Australia.

“They have advanced from dependent family members to financially independent entrepreneurs. Their new skills, such as servicing the tractors, marketing and shelling, have increased their family’s income. FACASI has also inspired community members to launch aligned businesses such as shelling services, inventing new two-wheel tractor implements for the growing customer base, or becoming artisan mechanics. In some districts, the two-wheel tractors are starting to create a cycle of innovation, business development, food diversification and sustainable economic growth,” she said.

6. Respond to farmer demands

Although the FACASI team set out to promote mechanization as a way to help farmers take up conservation agriculture techniques such as direct seeding, they opened the Pandora’s box for other beneficial uses. By the project’s end, it was clear that transport and mechanization of post-harvest tasks like shelling and threshing, had become far more popular among farmers than mechanization of crop production. This result is a sign of the team’s success in demonstrating the value of small-scale mechanization, and adapting technologies to respond to farmers’ needs.

7. Embrace new research models

Agricultural research for development has long forgotten about labour and mechanization issues; the FACASI team helped put these front and center by involving engineers, business enterprises, agriculturalists, and partners from across the supply chain.

“FACASI demonstrates an important change in how to do agricultural research to achieve meaningful impacts,” Woodhead said.

“Rather than focus only on the farm environment and on extension services, they worked from the outset with partners across the food, agriculture and manufacturing sectors, as well as with the public institutions that can sustain long-term change. The project’s results are exciting because they indicate that sustainable growth can be achieved by aligning conservation agriculture goals, institutions and a community’s business value propositions,” she explained.

What’s next?

Demonstration of a minitiller, Naivasha, Kenya. (Photo: Matt O' Leary/CIMMYT)
Demonstration of a minitiller, Naivasha, Kenya. (Photo: Matt O’ Leary/CIMMYT)

Although the project has ended, its insights and lessons will carry on.

“We have built a solid proof of concept. We know what piece of machinery works in a particular context, and have tested different delivery models to understand what works where,” explained Frédéric Baudron.

“We now need to move from piloting to scaling. This does not mean leaving all the work to development partners; research still has a big role to play in generating evidence and making sure this knowledge can be used by local manufacturers, engineers, local dealers and financial institutions,” he said.

As an international research organization, CIMMYT is strategically placed to provide critical answers to farming communities and the diversity of actors in the mechanization value chain.

A number of other organizations have taken up the mantle of change, supporting mechanization as part of their agricultural investments. This includes an initiative supported by the German Development Agency (GIZ) in Ethiopia, an IFAD-supported project to boost local wheat production in Rwanda and Zambia, and an intervention in Zimbabwe supported by the Zimbabwe Resilience Building Fund.

“ACIAR provided us generous and visionary support, at a time when very few resources were going to mechanization research in Africa,” Baudron acknowledged. “This allowed CIMMYT and its partners from the national research system and the private sector to develop unique expertise on scale-appropriate mechanization. The legacy of FACASI will be long-lived in the region,” he concluded.

Cover photo: Starwheel planter in Zimbabwe. (Photo: Jérôme Bossuet/CIMMYT)

Gauging the impact of COVID-19 lockdown on farming communities and agribusinesses in Nepal

The agricultural market has been suffering since the government of Nepal imposed a lockdown from March 23, 2020 to limit the spread of COVID-19 in the country. A month after the lockdown, the International Maize and Wheat Improvement Center (CIMMYT) conducted a rapid assessment survey to gauge the extent of disruptions of the lockdown on households from farming communities and agribusinesses.

As part of the Nepal Seed and Fertilizer (NSAF) project, CIMMYT researchers surveyed over 200 key stakeholders by phone from 26 project districts. These included 103 agrovet owners and 105 cooperative managers who regularly interact with farming communities and provide agricultural inputs to farmers. The respondents served more than 300,000 households.

The researchers targeted maize growing communities for the survey since the survey period coincided with the primary maize season.

Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)
Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)

Key insights from the survey

The survey showed that access to maize seed was a major problem that farmers experienced since the majority of agrovets were not open for business and those that were partially open — around 23% — did not have much customer flow due to mobility restrictions during the lockdown.

The stock of hybrid seed was found to be less than open pollinated varieties (OPVs) in most of the domains. Due to restrictions on movement during the entire maize-planting season, many farmers must have planted OPVs or saved seeds.

Access to fertilizers such as urea, DAP and MOP was another major problem for farmers since more than half of the cooperatives and agrovets reported absence of fertilizer stock in their area. The stock of recommended pesticides to control pests such as fall armyworm was reported to be limited or out of stock at the cooperatives and agrovets.

Labor availability and use of agricultural machineries was not seen as a huge problem during the lockdown in the surveyed districts.

It was evident that food has been a priority for all household expenses. More than half of the total households mentioned that they would face food shortages if the lockdown continues beyond a month.

During the survey, around 36% of households specified cash shortages to purchase agricultural inputs, given that a month had already passed since the lockdown began in the country. The majority of the respondents reported that the farm households were managing their cash requirements by borrowing from friends and relatives, local cooperatives or selling household assets such as livestock and agricultural produces.

Most of the households said that they received food rations from local units called Palikas, while a small number of Palikas also provided subsidized seeds and facilitated transport of agricultural produce to market during the lockdown. Meanwhile, the type of support preferred by farming communities to help cope with the COVID-19 disruptions — ranging from food rations, free or subsidized seed, transportation of fertilizers and agricultural produce, and provision of credit — varied across the different domains.

The survey also assessed the effect of lockdown on agribusinesses like agrovets who are major suppliers of seed, and in a few circumstances sell fertilizer to farmers in Nepal. As the lockdown enforced restrictions on movement, farmers could not purchase inputs from agrovets even when the agrovets had some stock available in their area. About 86% of agrovets spoke of the difficulty to obtain supplies from their suppliers due to the blockage of transportation and product unavailability, thereby causing a 50-90% dip in their agribusinesses.

Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)
Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)

Immediate actions to consider

Major takeaways from this survey are as follows:

  • Currently, food access is a priority and households are spending more money on food. However, as and when the lockdown eases, the need for cash to buy agricultural inputs and services is likely to emerge and may require attention.
  • Accessing maize seed and fertilizer was a problem in many communities during the maize season. Similarly, a shortage of rice seed, particularly hybrids, can be an issue for farmers unless efforts are made right away.
  • To help cope with the COVID-19 disruptions, a one-size-fits-all relief package would not be effective for farming communities living in different domains. Major support should be on facilitating transport and distribution of seed and fertilizers, access to food supplies through the local government’s schemes, and provision of soft loans.
  • Agrovets have an important contribution as the last mile service providers and they were hit hard by the lockdown. Therefore, facilitating agrovet businesses to operate and transport seeds, fertilizers, and pesticides from suppliers to agrovet business points will be essential to restore businesses and deliver agri-inputs to farmers.

The survey findings were presented and shared with the government, private sector, development partner organizations and project staff over a virtual meeting. This report will serve as a resource for the project and various stakeholders to design their COVID-19 response and recovery strategy development and planning.

When mothers learn from babies

Kiyasi Gwalale walking through her baby trial in Chebvute, Masvingo. Photo: C. Thierfelder/CIMMYT
Kiyasi Gwalale walking through her baby trial in Chebvute, Masvingo. Photo: C. Thierfelder/CIMMYT

It was an early morning on March 12, 2020, when we entered Kiyasi Gwalale’s field in the Chebvute area of Masvingo, southern Zimbabwe. Gwalale participates in the Zambuko Livelihoods Initiative, funded by the United States Agency for International Development (USAID).

The Zambuko initiative aims to increase rural resilience against the negative effects of climate change. More than 70% of smallholders in Zimbabwe farm on sandy soils that are low in soil fertility and are increasingly affected by the vagaries of climate. The Gwalale family is an example of one of the millions affected.

In Chebvute, the International Maize and Wheat Improvement Center (CIMMYT) has established trials to test the effectiveness and productivity of conservation agriculture and climate resilient crop species since 2018. This has been in the form of “mother and baby” trials.

A traditional tool of breeders, “mother trials” show different technologies to farmers to allow them to select the best option. In Chebvute, these trials were amplified to demonstrate farmers’ crop management practices such as conservation agriculture, crop rotation with legumes and different drought-resilient crop varieties.

A baby trial with DT maize, cowpea and white sorghum in Chebvute. Photo: C. Thierfelder/CIMMYT
A baby trial with DT maize, cowpea and white sorghum in Chebvute. Photo: C. Thierfelder/CIMMYT

Baby trial farmers taking after their ‘mothers’

Since 2019, the best options have been taken on by follower farmers in so called “baby trials”, where they use a subset from the mother trials to gain first-hand experience with the technology. Learning by doing is a central concept of this approach.

Gwalale as a “baby trial farmer” learned from the mother trials that drought-tolerant maize varieties out-yield traditional varieties under conservation agriculture, but need to be rotated with legumes to also improve the soil and the nutrition of the farm household. In addition, she realized that planting white sorghum is a drought-resilient strategy in this area as small grains are less affected by in-season dry-spells.

Gwalale and her family have been resident in Chebvute for 15 years but farm only on 0.4 ha of land. With her husband and three children, she grows maize, sorghum, groundnuts and Bambara nuts. What she gets from these fields is barely enough to survive.

In the 2019/20 cropping season, a devastating drought lasting from mid-December to mid-January destroyed all her hopes that this year would be a better season. Instead, she went on an educational journey to find out how improved farming practices can make a difference in her own life.

“We planted this baby trial for the first time in December 2019, as we had seen from the nearby mother trials that these varieties planted under no-tillage seem to grow better than our own. We planted the baby at the same times as our own crops, but instead of tilling the soil and clearing the land, which we are used to, we just planted in riplines without tillage and covered the soil with mulch,” explains Gwalale.

“When the drought came, all my other crops in the tilled fields started to wilt and die — some did not even germinate. We could not believe what was happening in this baby trial”.

CIMMYT scientist Christian Thierfielder pleased with the results in another baby trial plot in Chebvute. Photo: C. Thierfelder/CIMMYT
CIMMYT scientist Christian Thierfielder pleased with the results in another baby trial plot in Chebvute. Photo: C. Thierfelder/CIMMYT

Resounding results in the baby trial

All crops in the baby trial survived the dry-spell and when the rains started to fall again in January, they continued to grow very well. Gwalale replanted the crops in the affected fields but they never caught up with the baby trial. Even after using the ripper to make more riplines, it was too late to experience the same wonder seen in the baby trial. “For now, we are yet to see how much we will get from this small field, but we learned a big lesson and want to expand our land area with this way of planting next year,” she says.

More than 200 baby trial farmers in Chebvute, the majority of which are women, have experienced the same in their own baby trials and realized that it does not take much effort to achieve food security.

Timely planting, conserving the soil and the moisture with conservation agriculture, effective weeding and application of adequate plant nutrients are the key ingredients of success. This can be learned effectively in a small plot such as a baby trial. Farmers have realized that it is possible to make a difference when they apply the principles of sustainable agriculture in their farming systems. The interventions introduced will help them to become more climate-resilient and ultimately more food secure.

New publications: From working in the fields to taking control

Using data from 12 communities across four Indian states, an international team of researchers has shed new light on how women are gradually innovating and influencing decision-making in wheat-based systems.

The study, published this month in The European Journal of Development Research, challenges stereotypes of men being the sole decision-makers in wheat-based systems and performing all the work. The authors, which include researchers from the CGIAR Research Program on Wheat (WHEAT)-funded GENNOVATE initiative, show that women adopt specific strategies to further their interests in the context of wheat-based livelihoods.

In parts of India, agriculture has become increasingly feminized in response to rising migration of men from rural areas to cities. An increasing proportion of women, relative to men, are working in the fields. However, little is known about whether these women are actually taking key decisions.

The authors distinguish between high gender gap communities — identified as economically vibrant and highly male-dominant — and low gender gap communities, which are also economically vibrant but where women have a stronger say and more room to maneuver.

The study highlights six strategies women adopt to participate actively in decision-making. These range from less openly challenging strategies that the authors term acquiescence, murmuring, and quiet co-performance (typical of high gender gap communities), to more assertive ones like active consultation, women managing, and finally, women deciding (low gender gap communities).

In acquiescence, for example, women are fully conscious that men do not expect them to take part in agricultural decision-making, but do not articulate any overt forms of resistance.

In quiet co-performance, some middle-income women in high gender gap communities begin to quietly support men’s ability to innovate, for example by helping to finance the innovation, and through carefully nuanced ‘suggestions’ or ‘advice.’ They don’t openly question that men take decisions in wheat production. Rather, they appear to use male agency to support their personal and household level goals.

In the final strategy, women take all decisions in relation to farming and innovation. Their husbands recognize this process is happening and support it.

A wheat farmer in India. (Photo: J. Cumes/CIMMYT)
A wheat farmer in India. (Photo: J. Cumes/CIMMYT)

“One important factor in stronger women’s decision-making capacity is male outmigration. This is a reality in several of the low gender gap villages studied—and it is a reality in many other communities in India. Another is education—many women and their daughters talked about how empowering this is,” said gender researcher and lead-author Cathy Farnworth.

In some communities, the study shows, women and men are adapting by promoting women’s “managerial” decision-making. However, the study also shows that in most locations the extension services have failed to recognize the new reality of male absence and women decision-makers. This seriously hampers women, and is restricting agricultural progress.

Progressive village heads are critical to progress, too. In some communities, they are inclusive of women but in others, they marginalize women. Input suppliers — including machinery providers — also have a vested interest in supporting women farm managers. Unsurprisingly, without the support of extension services, village heads, and other important local actors, women’s ability to take effective decisions is reduced.

“The co-authors, partners at Glasgow Caledonian University and in India, were very important to both obtaining the fieldwork data, and the development of the typology” said Lone Badstue, researcher at the International Maize and Wheat Improvement Center (CIMMYT) and another co-author of the paper.

The new typology will allow researchers and development partners to better understand empowerment dynamics and women’s agency in agriculture. The authors argue that development partners should support these strategies but must ultimately leave them in the hands of women themselves to manage.

“It’s an exciting study because the typology can be used by anyone to distinguish between the ways women (and men) express their ideas and get to where they want”, concluded Farnworth.

Read the full article in The European Journal of Development Research:
From Working in the Fields to Taking Control. Towards a Typology of Women’s Decision-Making in Wheat in India

Women harvest wheat in India. (Photo: J. Cumes/CIMMYT)
Women harvest wheat in India. (Photo: J. Cumes/CIMMYT)

See more recent publications from CIMMYT researchers:

  1. isqg: A Binary Framework for in Silico Quantitative Genetics. 2019. Toledo, F.H., Perez-Rodriguez, P., Crossa, J., Burgueño, J. In: G3: Genes, Genomes, Genetics v. 9, no. 8, pag. 2425-2428
  2. Short-term impacts of conservation agriculture on soil physical properties and productivity in the midhills of Nepal. 2019. Laborde, J.P., Wortmann, C.S., Blanco-Canqui, H., McDonald, A., Baigorria, G.A., Lindquist, J.L. In: Agronomy Journal v.111, no. 4, pag. 2128-2139.
  3. Meloidogyne arenaria attacking eggplant in Souss region, Morocco. 2019. Mokrini, F., El Aimani, A., Abdellah Houari, Bouharroud, R., Ahmed Wifaya, Dababat, A.A. In: Australasian Plant Disease Notes v. 14, no. 1, art. 30.
  4. Differences in women’s and men’s conservation of cacao agroforests in coastal Ecuador. 2019. Blare, T., Useche, P. In: Environmental Conservation v. 46, no. 4, pag. 302-309.
  5. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. 2019. Kunpu Zhang, Junjun Wang, Huanju Qin, Zhiying Wei, Libo Hang, Pengwei Zhang, Reynolds, M.P., Daowen Wang In: The Crop Journal v. 7, no. 6, pag. 845-856.
  6. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. 2019. Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R.C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky, R., Mulhern, W., Jahn, M. In: Carbon Management v. 10, no. 6, pag. 567-587.
  7. Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions. 2019. Eash, L., Fonte, S.J., Sonder, K., Honsdorf, N., Schmidt, A., Govaerts, B., Verhulst, N. In: Journal of Agricultural Science v. 157, no. 4, pag. 300-317.
  8. Genome editing, gene drives, and synthetic biology: will they contribute to disease-resistance crops, and who will benefit?. 2019. Pixley, K.V., Falck-Zepeda, J.B., Giller, K.E., Glenna, L.L., Gould, F., Mallory-Smith, C., Stelly, D.M., Stewart Jr, C.N. In: Annual Review of Phytopathology v. 57, pag. 165-188.
  9. Rice mealybug (Brevennia rehi): a potential threat to rice in a long-term rice-based conservation agriculture system in the middle Indo-Gangetic Plain. 2019. Mishra, J. S., Poonia, S. P., Choudhary, J.S., Kumar, R., Monobrullah, M., Verma, M., Malik, R.K., Bhatt, B. P. In: Current Science v. 117, no. 4, 566-568.
  10. Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. 2019. Sinha, A.K., Ghosh, A., Dhar, T., Bhattacharya, P.M., Mitra, B., Rakesh, S., Paneru, P., Shrestha, R., Manandhar, S., Beura, K., Dutta, S.K., Pradhan, A.K., Rao, K.K., Hossain, A., Siddquie, N., Molla, M.S.H., Chaki, A.K., Gathala, M.K., Saiful Islam., Dalal, R.C., Gaydon, D.S., Laing, A.M., Menzies, N.W. In: Soil Research v. 57, no. 8, Pag. 883-893.
  11. Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. 2019. Rosyara, U., Kishii, M., Payne, T.S., Sansaloni, C.P., Singh, R.P., Braun, HJ., Dreisigacker, S. In: Nature Scientific Reports v. 9, no. 1, art. 12355.
  12. Joint use of genome, pedigree, and their interaction with environment for predicting the performance of wheat lines in new environments. 2019. Howard, R., Gianola, D., Montesinos-Lopez, O.A., Juliana, P., Singh, R.P., Poland, J.A., Shrestha, S., Perez-Rodriguez, P., Crossa, J., Jarquín, D. In: G3: Genes, Genomes, Genetics v. 9, no. 9 pag. 2925-2934.
  13. Deep kernel for genomic and near infrared predictions in multi-environment breeding trials. 2019. Cuevas, J., Montesinos-Lopez, O.A., Juliana, P., Guzman, C., Perez-Rodriguez, P., González-Bucio, J., Burgueño, J., Montesinos-Lopez, A., Crossa, J. In: G3: Genes, Genomes, Genetics v. 9. No. 9, pag. 2913-2924.
  14. Multi-environment QTL analysis using an updated genetic map of a widely distributed Seri × Babax spring wheat population. 2019. Caiyun Liu, Khodaee, M., Lopes, M.S., Sansaloni, C.P., Dreisigacker, S., Sukumaran, S., Reynolds, M.P. In: Molecular Breeding v. 39, no. 9, art. 134.
  15. Characterization of Ethiopian wheat germplasm for resistance to four Puccinia graminis f. sp. tritici races facilitated by single-race nurseries. 2019. Hundie, B., Girma, B., Tadesse, Z., Edae, E., Olivera, P., Hailu, E., Worku Denbel Bulbula, Abeyo Bekele Geleta, Badebo, A., Cisar, G., Brown-Guedira, G., Gale, S., Yue Jin, Rouse, M.N. In: Plant Disease v. 103, no. 9, pag. 2359-2366.
  16. Marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. 2019. Randhawa, M.S., Bains, N., Sohu, V.S., Chhuneja Parveen, Trethowan, R.M., Bariana, H.S., Bansal, U. In: Agronomy v. 9, no. 9, art. 497.
  17. Design and experiment of anti-vibrating and anti-wrapping rotary components for subsoiler cum rotary tiller. 2019. Kan Zheng, McHugh, A., Hongwen Li, Qingjie Wang, Caiyun Lu, Hongnan Hu, Wenzheng Liu, Zhiqiang Zhang, Peng Liu, Jin He In: International Journal of Agricultural and Biological Engineering v. 14, no. 4, pag. 47-55.
  18. Hydrogen peroxide prompted lignification affects pathogenicity of hemi-bio-trophic pathogen Bipolaris sorokiniana to wheat. 2019. Poudel, A., Sudhir Navathe, Chand, R., Vinod Kumar Mishra, Singh, P.K., Joshi, A.K. In: Plant Pathology Journal v. 35, no. 4, pag. 287-300.
  19. Population-dependent reproducible deviation from natural bread wheat genome in synthetic hexaploid wheat. 2019. Jighly, A., Joukhadar, R., Sehgal, D., Sukhwinder-Singh, Ogbonnaya, F.C., Daetwyler, H.D. In: Plant Journal v. 100, no, 4. Pag. 801-812.
  20. How do informal farmland rental markets affect smallholders’ well-being? Evidence from a matched tenant–landlord survey in Malawi. 2019. Ricker-Gilbert, J., Chamberlin, J., Kanyamuka, J., Jumbe, C.B.L., Lunduka, R., Kaiyatsa, S. In: Agricultural Economics v. 50, no. 5, pag. 595-613.
  21. Distribution and diversity of cyst nematode (Nematoda: Heteroderidae) populations in the Republic of Azerbaijan, and their molecular characterization using ITS-rDNA analysis. 2019. Dababat, A.A., Muminjanov, H., Erginbas-Orakci, G., Ahmadova Fakhraddin, G., Waeyenberge, L., Senol Yildiz, Duman, N., Imren, M. In: Nematropica v. 49, no. 1, pag. 18-30.
  22. Response of IITA maize inbred lines bred for Striga hermonthica resistance to Striga asiatica and associated resistance mechanisms in southern Africa. 2019. Gasura, E., Setimela, P.S., Mabasa, S., Rwafa, R., Kageler, S., Nyakurwa, C. S. In: Euphytica v. 215, no. 10, art. 151.
  23. QTL mapping and transcriptome analysis to identify differentially expressed genes induced by Septoria tritici blotch disease of wheat. 2019. Odilbekov, F., Xinyao He, Armoniené, R., Saripella, G.V., Henriksson, T., Singh, P.K., Chawade, A. In: Agronomy v. 9, no. 9, art. 510.
  24. Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. 2019. Dagne Wegary Gissa, Chere, A.T., Prasanna, B.M., Berhanu Tadesse Ertiro, Alachiotis, N., Negera, D., Awas, G., Abakemal, D., Ogugo, V., Gowda, M., Fentaye Kassa Semagn In: Nature Scientific Reports v. 9, art. 13490.
  25. The impact of salinity on paddy production and possible varietal portfolio transition: a Vietnamese case study. 2019. Dam, T.H.T., Amjath Babu, T.S., Bellingrath-Kimura, S., Zander, P. In: Paddy and Water Environment In: 17. No. 4, pag. 771-782.

Small but mighty

Nearly 65,000 farmers in Nepal, 40% of which were women, have benefited from the Agronomy and Seed Systems Scaling project, according to a comprehensive new report. This project is part of the Cereals Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT) and supported by USAID.

One of the project’s most recent successes has been in accelerating the adoption of the nutritious and stress-tolerant mung bean in rice-wheat farming systems.

Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)
Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)

Rice-wheat is the dominant cropping system in the lowland region of Nepal. Farmers typically harvest wheat in March and transplant rice in July, leaving land fallow for up to 100 days. A growing body of evidence shows, however, that planting mung bean during this fallow period can assist in improving farmers’ farming systems and livelihoods.

“The mung bean has multiple benefits for farmers,” says Narayan Khanal, a researcher at CIMMYT. “The first benefit is nutrition: mung beans are very rich in iron, protein and are easily digestible. The second benefit is income: farmers can sell mung beans on the market for a higher price than most other legumes. The third benefit is improved soil health: mung beans fix the nitrogen from the atmosphere into the soil as well as improve soil organic content.”

Commonly used in dishes like dahl, soups and sprout, mung beans are a common ingredient in Asian cuisine. However, prior to the project, most farmers in Nepal had never seen the crop before and had no idea how to eat it. Encouraging them to grow the crop was not going to be an easy task.

Thanks to dedicated efforts by CIMMYT researchers, more than 8,000 farmers in Nepal are now cultivating mung bean on land that would otherwise be left fallow, producing over $1.75 million of mung bean per year.

The newfound enthusiasm for growing mung bean could not have been achieved without the help of local women’s farming groups, said Timothy J. Krupnik, CIMMYT senior scientist and CSISA project leader.

Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)

Bringing research and innovations to farmers’ fields

Introducing the mung bean crop to farmers’ fields was just one of the successes of Agronomy and Seed Systems Scaling, which was an added investment by USAID in the wider CSISA project, which began in 2014. The project aims to move agronomic and crop varietal research into real-world impact. It has helped farmers get better access to improved seeds and machinery and strengthened partnerships with the private sector, according to Khanal.

CSISA support in business mentoring and capacity building of seed companies to popularize newly released, biofortified and stress-tolerant wheat varieties has led to seed sales volumes tripling between 2014 to 2019. The project also led to a 68% increase in the number of new improved wheat varieties since the inception of the project.

Nepal’s National Wheat Research Program was able to fast track the release of the early maturing variety BL 4341, by combining data generated by the project through seed companies and the Nepal Agricultural Research Council (NARC) research station. Other varieties, including Borlaug 100 and NL 1327, are now in the pipeline.

Empowering women and facilitating women’s groups have been critical components of the project. Nepal has seen a mass exodus of young men farmers leaving the countryside for the city, leaving women to work the farms. CIMMYT worked with women farmer groups to expand and commercialize simple to use and affordable technologies, like precision seed and fertilizer spreaders.

Over 13,000 farmers have gained affordable access to and benefited from precision agriculture machinery such as two-wheel ‘hand tractors’ and ‘mini tillers.’ This is a major change for small and medium-scale farmers in South Asia who typically rely on low horsepower four-wheel tractors. The project also introduced an attachment for tractors for harvesting rice and wheat called the ‘reaper.’ This equipment helps to reduce the costs and drudgery of manual harvesting. In 2019, Nepal’s Terai region had almost 3,500 reapers, versus 22 in 2014.

To ensure the long-term success of the project, CSISA researchers have trained over 2,000 individuals from the private and public sector, and over 1,000 private organizations including machinery manufacturers and agricultural input dealers.

Researchers have trained project collaborators in both the public and private sector in seed systems, resilient varieties, better farming practices and appropriate agricultural mechanization business models. These partners have in turn passed this knowledge on to farmers, with considerable impact.

“The project’s outcomes demonstrates the importance of multi-year and integrated agricultural development efforts that are science-based, but which are designed in such a way to move research into impact and benefit farmers, by leveraging the skills and interests of Nepal’s public and private sector in unison,” said Krupnik.

“The outcomes from this project will continue to sustain, as the seed and market systems developed and nurtured by the project are anticipated to have long-lasting impact in Nepal,” he said.

Download the full report:
Cereal Systems Initiative for South Asia: Agronomy and Seed Systems Scaling. Final report (2014-2019)

The Cereal Systems Initiative for South Asia (CSISA) is led by the International Maize and Wheat Center (CIMMYT), implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.

Cover photo: A member of a women farmers group serves a platter of mung bean dishes in Suklaphanta, Nepal. (Photo: Merit Maharajan/Amuse Communication)

Conservation agriculture key in meeting UN Sustainable Development Goals

During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)
During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)

An international team of scientists has provided a sweeping new analysis of the benefits of conservation agriculture for crop performance, water use efficiency, farmers’ incomes and climate action across a variety of cropping systems and environments in South Asia.

The analysis, published today in Nature Sustainability, is the first of its kind to synthesize existing studies on conservation agriculture in South Asia and allows policy makers to prioritize where and which cropping systems to deploy conservation agriculture techniques. The study uses data from over 9,500 site-year comparisons across South Asia.

According to M.L. Jat, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study, conservation agriculture also offers positive contributions to the Sustainable Development Goals of no poverty, zero hunger, good health and wellbeing, climate action and clean water.

“Conservation agriculture is going to be key to meet the United Nations Sustainable Development Goals,” echoed JK Ladha, adjunct professor at the University of California, Davis, and co-author of the study.

Scientists from CIMMYT, the Indian Council of Agricultural Research (ICAR), the University of California, Davis, the International Rice Research Institute (IRRI) and Cornell University looked at a variety of agricultural, economic and environmental performance indicators — including crop yields, water use efficiency, economic return, greenhouse gas emissions and global warming potential — and compared how they correlated with conservation agriculture conditions in smallholder farms and field stations across South Asia.

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Results and impact on policy

Researchers found that many conservation agriculture practices had significant benefits for agricultural, economic and environmental performance indicators, whether implemented separately or together. Zero tillage with residue retention, for example, had a mean yield advantage of around 6%, provided farmers almost 25% more income, and increased water use efficiency by about 13% compared to conventional agricultural practices. This combination of practices also was shown to cut global warming potential by up to 33%.

This comes as good news for national governments in South Asia, which have been actively promoting conservation agriculture to increase crop productivity while conserving natural resources. South Asian agriculture is known as a global “hotspot” for climate vulnerability.

“Smallholder farmers in South Asia will be impacted most by climate change and natural resource degradation,” said Trilochan Mohapatra, Director General of ICAR and Secretary of India’s Department of Agricultural Research and Education (DARE). “Protecting our natural resources for future generations while producing enough quality food to feed everyone is our top priority.”

“ICAR, in collaboration with CIMMYT and other stakeholders, has been working intensively over the past decades to develop and deploy conservation agriculture in India. The country has been very successful in addressing residue burning and air pollution issues using conservation agriculture principles,” he added.

With the region’s population expected to rise to 2.4 billion, demand for cereals is expected to grow by about 43% between 2010 and 2050. This presents a major challenge for food producers who need to produce more while minimizing greenhouse gas emissions and damage to the environment and other natural resources.

“The collaborative effort behind this study epitomizes how researchers, policy-makers, and development practitioners can and should work together to find solutions to the many challenges facing agricultural development, not only in South Asia but worldwide,” said Jon Hellin, leader of the Sustainable Impact Platform at IRRI.


Related publications:

Conservation agriculture for sustainable intensification in South Asia.

Interview opportunities:

M.L. Jat, Principal Scientist and Cropping Systems Agronomist, International Maize and Wheat Improvement Center (CIMMYT)

For more information, or to arrange interviews, contact:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

Funders of this work include the Indian Council of Agricultural Research (ICAR), the Government of India and the CGIAR Research Programs on Wheat Agri-Food Systems (CRP WHEAT) and Climate Change, Agriculture and Food Security (CCAFS).

About CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

The value of research on plant resistance to insects

Crop pest outbreaks are a serious threat to food security worldwide. Swarms of locusts continue to form in the Horn of Africa, threatening food security and farmer livelihoods ahead of a new cropping season. The devastating fall armyworm continues cause extensive damage in Africa and South Asia.

With almost 40% of food crops lost annually due to pests and diseases, plants resistance to insects is more important than ever. Last month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT) global headquarters outside Mexico City.

Watch Mike Smith, entomologist and distinguished professor emeritus at Kansas State University explain the importance of working with economists to document the value of plant insect resistance research, and why communication is crucial for raising awareness of the threat of crop pests and insect resistance solutions.

Safeguarding biodiversity is essential to prevent the next COVID-19

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While the world’s attention is focused on controlling COVID-19, evidence points at the biodiversity crisis as a leading factor in its emergence. At first glance, the two issues might seem unrelated, but disease outbreaks and degraded ecosystems are deeply connected. Frédéric Baudron, systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and Florian Liégeois, virologist at the Institut de Recherche pour le Développement (IRD) share their insights on the current COVID-19 crisis and the link between biodiversity loss and emerging infectious diseases.

What trends are we seeing with infectious diseases like COVID-19?

We see that outbreaks of infectious diseases are becoming more frequent, even when we account for the so-called “reporting bias”: surveillance of such events becoming better with time and surveillance being better funded in the North than in the South.

60% of infectious diseases are zoonotic, meaning that they are spread from animals to humans and 72% of these zoonoses originate from wildlife. COVID-19 is just the last in a long list of zoonoses originating from wildlife. Other recent outbreaks include SARS, Ebola, avian influenza and swine influenza. As human activities continue to disturb ecosystems worldwide, we are likely to see more pathogens crossing from wildlife to humans in the future. This should serve as a call to better manage our relationship with nature in general, and wildlife in particular.

Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)
Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)

Why are we seeing more cases of diseases crossing from animals to humans? Where are they coming from?

Evidence points to bushmeat trade and consumption as the likely driver for the emergence of COVID-19. The emergence of SARS and Ebola was also driven by bushmeat consumption and trade. However, when looking at past outbreaks of zoonoses caused by a pathogen with a wildlife origin, land use changes, generally due to changes in agricultural practices, has been the leading driver.

Pathogens tends to emerge in well known “disease hotspots,” which tend to be areas where high wildlife biodiversity overlaps with high population density. These hotspots also tend to be at lower latitude. Interestingly, many of these are located in regions where CIMMYT’s activities are concentrated: Central America, East Africa and South Asia. This, in addition to the fact that agricultural changes are a major driver of the emergence of zoonoses, means that CIMMYT researchers may have a role to play in preventing the next global pandemic.

Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)
Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)

How exactly does biodiversity loss and land use change cause an increase in zoonotic diseases?

There are at least three mechanisms at play. First, increased contact between wildlife and humans and their livestock because of encroachment in ecosystems. Second, selection of wildlife species most able to infect humans and/or their livestock — often rodents and bats — because they thrive in human-dominated landscapes. Third, more pathogens being carried by these surviving wildlife species in simplified ecosystems. Pathogens tend to be “diluted” in complex, undisturbed, ecosystems.

The fast increase in the population of humans and their livestock means that they are interacting more and more frequently with wildlife species and the pathogens they carry. Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates: there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth! We live on an increasingly “cultivated planet,” with new species assemblages and new opportunities for pathogens to move from one species to another.

Wildlife trade and bushmeat consumption have received a lot of attention as primary causes of the spread of these viruses. Why has there been so little discussion on the connection with biodiversity loss?

The problem of biodiversity loss as a driver of the emergence of zoonoses is a complex one: it doesn’t have a simple solution, such as banning wet markets in China. It’s difficult to communicate this issue effectively to the public. It’s easy to find support for ending bushmeat trade and consumption because it’s easy for the public to understand how these can lead to the emergence of zoonoses, and sources of bushmeat include emblematic species with public appeal, like apes and pangolins. Bushmeat trafficking and consumption also gives the public an easy way to shift the blame: this is a local, rather than global, issue and for most of us, a distant one.

There is an inconvenient truth in the biodiversity crisis: we all drive it through our consumption patterns. Think of your annual consumption of coffee, tea, chocolate, sugar, textiles, fish, etc. But the biodiversity crisis is often not perceived as a global issue, nor as a pressing one. Media coverage for the biodiversity crisis is eight times lower than for the climate crisis.

The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)
The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)

Agriculture is a major cause of land use change and biodiversity loss. What can farmers do to preserve biodiversity, without losing out on crop yields?

Farming practices that reduce the impact of agriculture on biodiversity are well known and form the foundation of sustainable intensification, for which CIMMYT has an entire program. A better question might be what we can do collectively to support them in doing so. Supportive policies, like replacing subsidies by incentives that promote sustainable intensification, and supportive markets, for example using certification and labeling, are part of the solution.

But these measures are likely to be insufficient alone, as a large share of the global food doesn’t enter the market, but is rather consumed by the small-scale family farmers who produce it.

Reducing the negative impact of food production on biodiversity is likely to require a global, concerted effort similar to the Paris Agreements for climate. As the COVID-19 pandemic is shocking the world, strong measures are likely to be taken globally to avoid the next pandemic. There is a risk that some of these measures will go too far and end up threatening rural livelihoods, especially the most vulnerable ones. For example, recommending “land sparing” — segregating human activities from nature by maximizing yield on areas as small as possible —  is tempting to reduce the possibility of pathogen spillover from wildlife species to humans and livestock. But food production depends on ecosystem services supported by biodiversity, like soil fertility maintenance, pest control and pollination. These services are particularly important for small-scale family farmers who tend to use few external inputs.

How can we prevent pandemics like COVID-19 from happening again in the future?

There is little doubt that new pathogens will emerge. First and foremost, we need to be able to control emerging infectious diseases as early as possible. This requires increased investment in disease surveillance and in the health systems of the countries where the next infectious disease is most likely to emerge. In parallel, we also need to reduce the frequency of these outbreaks by conserving and restoring biodiversity globally, most crucially in disease hotspots.

Farming tends to be a major driver of biodiversity loss in these areas but is also a main source of livelihoods. The burden of reducing the impact of agriculture on biodiversity in disease hotspots cannot be left to local farmers, who tend to be poor small-scale farmers: it will have to be shared with the rest of us.

Cover photo: Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)

Wheat curl mites: What are they and how can we fight them?

The wheat curl mite, a pesky wheat pest which can cause up to 100% yield losses, is a significant threat to wheat crops worldwide. The pest has been confirmed in Asia, Australia, Europe, North America and parts of South America. Almost invisible to the naked eye, the microscopic pest is one of the most difficult pests to manage in wheat due to its ability to evade insecticides.

We caught up with Punya Nachappa, an assistant professor at Colorado State University, at this year’s International Plant Resistance to Insects (IPRI) Workshop to discuss wheat curl mites and how to fight them. She explains how the mite cleverly avoids insecticides, how climate change is leading to increasing populations and why breeding for host plant resistance is the main defense against outbreaks.

ICARDA’s Mustapha El-Bouhssini explains how crop pests are moving in a warming world

Insect resistance in plants is needed now more than ever. The UN, which has named 2020 as the International Year of Plant Health, estimates that almost 40% of food crops are lost annually due to plant pests and diseases.

Earlier this month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT).

We caught up with Mustapha El-Bouhssini, principal scientist at the International Center for Agricultural Research in the Dry Areas (ICARDA) to discuss insect pests and climate change. He explains how pests such as the Hessian fly — a destructive wheat pest which resembles a mosquito — and the chickpea pod borer are extending their geographical ranges in response to rising temperatures.

Four ways of strengthening gender equality in the agricultural sector in the MENA region

When it comes to labor markets, the Middle East and North Africa (MENA) is one of the most gender unequal regions in the world. The male labor force participation rate in MENA is no different from other regions, at around 75%, but female labor force participation rates have remained stubbornly low, at around 20% .

Agriculture is the largest employer of women in the MENA region and the female share of the agricultural workforce increased from 30% in 1980 to almost 45% in 2010, exceeding 60% in Jordan, Libya, Syria and the occupied Palestinian Territory. However, women in the region still face significant challenges accessing land and benefitting from technologies and decent, equitable working conditions.

In the fall of 2019, a group of experts, including London School of Economics and Political Science (LSE) professor of Gender and Development Naila Kabeer, came together to discuss the persistent limited access to labor market opportunities for women in South Asia and MENA, despite an increase in women’s education and access to fertility planning. The workshop organized by LSE discussed barriers, opportunities and policy challenges.

Vegetable gardening in Tunisia. (Photo: ICARDA)
Vegetable gardening in Tunisia. (Photo: ICARDA)

We share some of the expert panel’s key recommendations for the MENA region, which featured research funded by the CGIAR Research Program on Wheat.

1. Recognize women as workers not helpers

According to the World Bank, agriculture employs 36% of women and 22% of men in Egypt. However, research shows that women who work in agriculture are widely categorized as “helpers” to male workers rather than workers in their own right. What’s more, women are listed as “housewives” on their national ID cards, while men are listed as “agricultural workers.” As a result, these women are unable to even access opportunities to bargain for better wages and working conditions.

Legally and socially recognizing these women as workers is a first step to introducing equal pay legislation for men and women in agriculture. It would also justify their inclusion in agricultural extension services and strengthen social protection measures.

2. Change perceptions of property ownership

The MENA region has the lowest level of women’s landownership in the world, at just 5%. Our research findings indicate completely different perceptions of ownership among women and men.

Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands. Men, on the other hand, are less likely to consider their wives as co-owners, identifying male relatives instead.

In the New Lands — lands irrigated after the building of the High Aswan Dam in Egypt — there are land distribution quotas to encourage more land ownership among women. This has enabled some women to gain significant economic, social and political power. Despite this, these women still prefer to bequeath their land to their sons rather than their daughters due to social pressure and the expectation that their sons will provide for them in their old age.

To mitigate these low levels of women’s land ownership, policy change on its own is not enough. Changing perceptions of land and property ownership needs to go hand in hand with changes at a policy level.

3. Enforce legislation for equal pay and zero tolerance for sexual harassment

In Morocco, female employment in agriculture has jumped from 29% in 1980 to 48% in 2010. However, women’s wages, working conditions and bargaining power have not risen with it.

Research shows that women are designated lower paid and more time-consuming tasks, and are systemically paid less than men, even for the same tasks. Women agricultural workers also face high levels of sexual harassment and have limited bargaining power.

Moroccan legislation already stipulates equal pay and zero tolerance for sexual harassment. However, enforcement remains extremely weak. Enforcing existing pro-active legislation is an essential step towards equality for women in agriculture.

4. Revitalize agriculture as a valuable and necessary occupation in society

Much of the world sees agriculture as an occupation of last resort. When surveyed, men and women in Morocco both complained about agricultural work being an unstable and unreliable way of making a living. Women were found to be hired more easily but only because they were paid less than men.

To shift how agriculture is viewed and rebrand it as an important and respected occupation, it needs to be reformed as a safer, more equal and respectful space for both women and men.

Building resilience for smallholder farmers in marginal drylands. (Photo: ICARDA)
Building resilience for smallholder farmers in marginal drylands. (Photo: ICARDA)

A key overall take-away message from the expert panel is that supportive policies alone are not enough. Rather, in order to tackle the institutionalization of harmful gender norms and stimulate actual change in practice at all levels, policy interventions need to go hand in hand with strong consciousness-raising, critical reflection and behavior change initiatives.

Read the full report:
Women’s access to market opportunities in South Asia and the Middle East & North Africa: barriers, opportunities and policy challenges

Explore our coverage of International Women’s Day 2020.
Explore our coverage of International Women’s Day 2020.

Spraying locusts before they can fly key for effective control

The locust invasion is the biggest in Ethiopia and Somalia in 25 years, and the biggest in Kenya in 70 years, according to the FAO. Photo: Ben Curtis/AP

East African countries are battling the worst desert locust invasion in decades. The locusts are devouring crops and pasture leaving in their wake a region that is staring at a potential food crisis. The swarms have swept across Djibouti, Eritrea, Ethiopia, Kenya, South Sudan, Somalia, Sudan, Tanzania and Uganda, with some of these countries reporting the worst outbreak in 70 years.

Experts have warned of a second round of the flare-up, as the eggs laid along the locust path hatch. Both aerial and ground spraying with insecticides continue but such interventions have not yielded much success.

Stephen Njoka, Director of the Desert Locust Control Organization for Eastern Africa (DLCO-EA) and Hugo De Groote, Agricultural Economist at the International Maize and Wheat Improvement Center (CIMMYT) share some insights on the outbreak, effective control measures and what can be done to mitigate the damage currently and in potential future outbreaks.

Q: What is your opinion on the locust invasion across the eastern Africa region?

A: The current locust invasion in the eastern Africa region is one of the most serious occurrences in decades. For Ethiopia and Kenya, this is the worst outbreak in over 25 years and 70 years respectively. The locusts have caused significant damage in pastoral regions, where they have devoured pasture and tree leaves. They are now reaching some of the major maize growing areas where they are likely to cause a lot of damage to the crops.

Q: Why are they called desert locusts?

A: They breed in the wet desert sands. In west Africa for instance, they would breed in the border areas between the Sahel and the Sahara Desert. They go through six stages; five of which are the non-flying phases. Once they reach adult stage, they start flying, mating and laying eggs, and the cycle continues.

They are usually solitary in nature, but occasionally move into their gregarious state, in which they alter their behavior and physical appearance, form swarms and migrate over long distances following the winds. This is what differentiates locusts from grasshoppers. When they land at a particular location, they cause a lot of damage in that specific area. Apart from that local destruction, however, they may not cause much harm on a national scale.

Q: How serious of a problem is this invasion to the food security status of countries like South Sudan that are just recovering from decades of conflict and a recent drought?

A: The invasion could pose a serious food security challenge in some areas as these insects consume their own weight in a day (one insect weighs 2 grams and a swarm can contain over 50 million insects).

For countries like South Sudan and Somalia where conflicts can hamper locust control efforts, the food insecurity situation gets compounded. Pastures are the worst hit as locusts tend to prefer hotter climates where livestock keeping is the main source of livelihood.

Q: In your experience, what is the best way to deal with such an invasion? What are the most effective control measures?

A: The best way to deal with such an invasion is to conduct aerial spraying using Ultra Low Volume (ULV) chemical or biological pesticides at the early stages for effective control. It is important to identify the egg-laying sites early on so that the emerging hoppers are sprayed before they can fly.

Q: We understand that this is the worst invasion in Kenya in about 70 years and the worst in 25 years in some neighboring countries such as Ethiopia. Should we expect another infestation a few years from now?

A: It is unlikely that we can expect another invasion of this magnitude in the near future. The current invasion may have been driven by climatic changes in the breeding areas of the Red Sea coast, war-torn Yemen and Somalia.

Q: How can we be better prepared given that such invasions are cyclical in nature and may happen again after some years or decades?

A: Continued monitoring and forecasting of the locust population in the traditional breeding sites should be a priority. Countries in the invasion areas should establish Locust Control Units under the appropriate ministries. These units should frequently get updates from the FAO Desert Locust Information Service (DLIS) in Rome and take precautionary steps as advised.

As the eastern Africa region, member countries of DLCO-EA should step up their support for the organization by acquiring modern aircrafts, which can conduct aerial spraying more effectively and efficiently.

Q: What monitoring measures are in place for the surveillance and recommended remedial measures, especially in periods of low densities just before they become gregarious? Who does the monitoring and how frequently is the monitoring done?

A: Locust scouting teams in the breeding areas are charged with monitoring and surveillance of these pests. The exercise is continuous and largely supported by FAO DLIS using appropriate equipment like elOCUST 3, a data recording and transmission system for crop pest monitoring, currently used as a detection and early warning tool for desert locusts.

Q: Are mitigation measures such as compensation for affected farmers an option?

A: Where farmers are seriously hit, government, intergovernmental agencies or non-governmental organizations may consider easing the farmers’ losses by offering food and/or financial support.

Q: We have seen efforts such as aerial or ground spraying of the pests. How effective are these interventions? What implications does this control measure have on the environment and people’s health?

A: The safe use of pesticides remains the best choice for control of insects occurring in such big numbers. It is important to use environmentally safe products which cause minimum harm to non-targets. Spray teams should be well trained on how to handle the pesticides.

People living in the invaded areas should also be alerted on keeping themselves and their livestock safe by not getting into the sprayed areas as advised. One effective biological control is the use of the Metarhizium, which the International Institute of Tropical Agriculture (IITA) developed out of the locust skin fungus.

Nevertheless, some chemicals may cause more harm to the environment, especially when aerial spraying is applied on swarms in flight. The pesticides can contaminate the environment, water, crops and can cause skin rashes or respiratory, neurological or eye problems. They can also cause harm to animals and aquatic species.

In times of locust outbreaks, like now, there is a tendency to procure large quantities of pesticides. However, once the locusts are gone, stockpiles of the unused pesticides remain. This brings about a new challenge of destroying or safely disposing of the old or obsolete pesticide stock.

Q: Can the locusts be eaten? 

A: Many communities in the world eat locusts and other insects. It is, however, important to caution against eating sprayed locusts. Additionally, locust swarms can contain billions of locusts, so catching them for food may not have a significant effect in reducing their population.

Pests and diseases and climate change: Is there a connection?

Responsible for 80% of the food we eat and 98% of the oxygen we breathe, plants are a pillar of life on earth. But they are under threat. Up to 40 percent of food crops are lost to plant pests and diseases each year according to the FAO.

When disease outbreaks occur, the impacts can be devastating. In the 1840s, the Irish potato famine, caused by the fungal disease late blight, killed around one million people and caused another million to emigrate.

The recent invasion of desert locusts throughout the horn of Africa – the worst in decades – shows how vulnerable crops are to pests as well.

The desert locust is one of the most destructive pests in the world, with one small swarm covering one square kilometer eating the same amount of food per day as 35,000 people. The outbreak could even provoke a humanitarian crisis, according to the FAO.

How does climate change affect pests and diseases?

Climate change is one factor driving the spread of pests and diseases, along with increasing global trade.  Climate change can affect the population size, survival rate and geographical distribution of pests; and the intensity, development and geographical distribution of diseases.

Temperature and rainfall are the big drivers of shifts in how and where pests and diseases spread, according to experts.

“In general, an increase in temperature and precipitation levels favors the growth and distribution of most pest species by providing a warm and humid environment and providing necessary moisture for their growth,” says Tek Sapkota, agricultural systems and climate change scientist at the International Maize and Wheat Improvement Center (CIMMYT).

However, when temperatures and precipitation levels get too high, this can slow the growth and reproduction of some pest species and destroy them by washing their eggs and larvae off the host plant, he explains.

This would explain why many pests are moving away from the tropics towards more temperate areas. Pests like warmer temperatures – but up to a point. If it is too hot or too cold, populations grow more slowly. Since temperate regions are not currently at the optimal temperature for pests, populations are expected to grow more quickly in these areas as they warm up.

Crop diseases are following a similar pattern, particularly when it comes to pathogens like fungi.

Movement towards the earth’s poles

Research shows that since 1960, crop pests and diseases have been moving at an average of 3 km a year in the direction of the earth’s north and south poles as temperatures increase.

Tar spot, a fungal disease native to Latin America, which can cause up to 50% of yield losses in maize, was detected for the first time in the US in 2015. Normally prevalent in tropical climates, the disease has started emerging in non-tropical regions, including highland areas of Central Mexico and many counties in the US.

Maize-producing counties in the USA vulnerable to tar spot complex (TSC) calculated based on climate similarity. Khondoker Mottaleb et al. 2018

The southern pine beetle, one of the most destructive insects invading North America, is moving north as temperatures rise and is likely to spread throughout northeastern United States and into southeastern Canada by 2050.

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina

Wheat rusts, which are among the greatest threats to wheat production around the world, are also adapting to warmer climates and becoming more aggressive in nature, says Mandeep Randhawa, CIMMYT wheat breeder and wheat rust pathologist.

“As temperatures rise, larger quantities of spores are produced that can cause further infection and could potentially result in pathogenic changes through faster rate of their evolution.”

Scientists recently reported that stem rust had emerged in the UK for the first time in 60 years. Climate changes over the past 25 years are likely to have encouraged conditions for infection, according to the study.

Rising CO2 levels

Rising carbon dioxide (CO2) levels could also affect pests indirectly, by changing the architecture of their host plant and weakening its defenses.

“Elevated CO2 concentrations, as a result of human activity and influence on climate change, will most likely influence pests indirectly through the modification in plant chemistry, physiology and nutritional content,” says Leonardo Crespo, CIMMYT wheat breeder.

Rising CO2 concentrations and temperatures could also provide a more favorable environment for pathogens like fungi, reports the International Panel on Climate Change (IPCC).

Despite high confidence among scientists that climate change will cause an increase in pests and diseases, predicting exactly when and where pests and diseases will spread is no easy task. There is significant variation between different species of pests and types of pathogens, and climate models can only provide estimates of where infection or outbreaks might occur.

Keeping pests and disease pandemics at bay

To address these uncertainties, experts increasingly recognize the need to monitor pest and disease outbreaks and have called for a global surveillance system to monitor these and improve responses.

Recent technological tools like the suitcase-sized mobile lab MARPLE, which tests pathogens such as wheat rust in near real-time and gives results within 48 hours, allow for early detection. Early warning systems are also crucial tools to warn farmers, researchers and policy makers of potential outbreaks.

Breeding pest- and disease-resistant varieties is another environmentally friendly solution, since it reduces the need for pesticides and fungicides. Collaborating with scientists worldwide, CIMMYT works on developing wheat and maize varieties resistant to diseases, including Fusarium Head Blight (FHB), wheat rust, wheat blast for wheat and maize lethal necrosis (MLN) for maize.

A ladybug (or ladybird) beetle sits on a wheat spike of an improved variety growing in the field in Islamabad, Pakistan. Photo credit: A. Yaqub/CIMMYT.

Beneficial insects can also act as a natural pest control for crops. Ladybugs, spiders and dragonflies act as natural predators for pests like aphids, caterpillars and stem borers. Other solutions include mechanical control measures such as light traps, pheromone traps and sticky traps, as well as farming practice controls such as crop rotation.

The United Nations has declared this year as the International Year of Plant Health, emphasizing the importance of raising global awareness on how “protecting plant health can help end hunger, reduce poverty, protect biodiversity and the environment, and boost economic development.”

As part of this initiative, CIMMYT will host the 24th Biannual International Plant Resistance to Insects (IPRI) conference from March 2-4. The conference will cover topics including plant-insect interactions, breeding for resistance, and phenotyping technologies for predicting pest resistant traits in plants.

Cover photo: A locust swarm in north-east Kenya. The UN Food and Agriculture Organization has warned that the swarms already seen in Somalia, Kenya and Ethiopia could range further afield. Photograph: Sven Torfinn/FAO

New publications: Optimum nitrogen fertilizer rates for rice and wheat in the Indo-Gangetic Plains of India

 

Wheat spikes against the sky. (Photo: H. Hernandez Lira/CIMMYT)

New research by an international team of scientists, including International Maize and Wheat Improvement Center (CIMMYT) agricultural systems and climate change scientist Tek Sapkota, has identified the optimum rates of nitrogen fertilizer application for rice and wheat crops in the Indo-Gangetic Plains of India.

By measuring crop yield and nitrous oxide (N2O) fluxes over two years, Sapkota and his colleagues reported that the optimum rate of N fertilizer for rice is between 120 and 200 kg per hectare, and between 50 and 185 kg per hectare for wheat. The results of the study have the potential to save farmer’s money and minimize dangerous greenhouse gas emissions while maintaining crop productivity.

Nitrous oxide, one of the most important greenhouse gases in the earth’s atmosphere, is responsible for ozone depletion and global climate change, and has a global warming potential 265 times that of carbon dioxide (CO2).

Research has shown that agricultural soils account for around 60% of global nitrous oxide emissions. These emissions are directly related to the application of nitrogen fertilizers to croplands. While these fertilizers help crop yields, studies show that only about one third of the applied nitrogen is actually used by crops. The rest is released as nitrous oxide or seeps into waterways, causing harmful algal blooms.

In India, the total consumption of nitrogen fertilizer is about 17 million tons — expected to rise to 24 million tons by 2030 to feed a growing population. Nitrous oxide emissions will rise along with it if farmers do not minimize their fertilizer use and manage application more efficiently. What’s more, farmers receive a higher subsidy for nitrogen fertilizer — a policy that leads farmers to apply more fertilizer than the recommended dose.

Measured methods

The study, led by Sapkota, estimated the rate of nitrogen fertilizer application with the most economically optimum yield and minimum environmental footprint. Applying more fertilizer than this would be a waste of farmer’s money and cause unnecessary harm to the environment.

Researchers measured crop yield and nitrous oxide fluxes for two wheat seasons and one rice season from 2014 to 2016.  The scientists found that nitrogen fertilization rate clearly influenced daily and cumulative soil nitrous oxide emissions in wheat and rice for both years. Nitrous oxide emissions were higher in both wheat and rice in the nitrogen-fertilized plots than in the control plots.

Using statistical methods, the researchers were able to measure the relationship between crop productivity, nitrogen rate and emissions intensity, in both rice and wheat. This gave them the optimum rate of nitrogen fertilizer application.

This work was carried out by International Maize and Wheat Improvement Center (CIMMYT) and implemented as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), with support from the CGIAR Trust Fund and through bilateral funding agreements.

Read the full study:
Identifying optimum rates of fertilizer nitrogen application to maximize economic return and minimize nitrous oxide emission from rice–wheat systems in the Indo-Gangetic Plains of India

See more recent publications by CIMMYT researchers: 

  1. Landscape composition overrides field level management effects on maize stemborer control in Ethiopia. 2019. Kebede, Y., Bianchi, F., Baudron, F., Tittonell, P. In: Agriculture, Ecosystems and Environment v. 279, p. 65-73.
  2. From plot to scale: ex-ante assessment of conservation agriculture in Zambia. 2019. Komarek, A.M.| Hoyoung Kwon, Haile, B., Thierfelder, C., Mutenje, M., Azzarri, C. In: Agricultural Systems v. 173, p. 504-518.
  3. Importance of considering technology growth in impact assessments of climate change on agriculture. 2019. Aggarwal, P.K., Vyas, S., Thornton, P., Campbell, B.M., Kropff, M. In. Global Food Security v. 23, p. 41-48.
  4. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. 2019. Buchaillot, M.L., Gracia-Romero, A., Vergara, O., Zaman-Allah, M., Amsal Tesfaye Tarekegne, Cairns, J.E., Prasanna, B.M., Araus, J.L., Kefauver, S.C. In: Sensors v. 19. No. 8, art. 1815.
  5. Understanding tropical maize (Zea mays L.): the major monocot in modernization and sustainability of agriculture in sub-Saharan Africa. 2019. Awata, L.A.O., Tongoona, P., Danquah, E., Ifie, B.E., Mahabaleswara, S.L., Jumbo, M.B., Marchelo-D’ragga, P.W., Sitonik, C. In: International Journal of Advance Agricultural Research v. 7, no. 2, p. 32-77.
  6. Genome-wide genetic diversity and population structure of tunisian durum wheat landraces based on DArTseq technology. 2019. Robbana, C., Kehel, Z., Ben Naceur, M., Sansaloni, C.P., Bassi, F., Amri, A. In: International Journal of Molecular Sciences v. 20, no. 6, art. 1352.
  7. High-throughput phenotyping for crop improvement in the genomics era. 2019. Mir, R., Reynolds, M.P., Pinto Espinosa, F., Khan, M.A., Bhat, M. In: Plant Science     v. 282, p. 60-72.
  8. Conservation agriculture based sustainable intensification: increasing yields and water productivity for smallholders of the Eastern Gangetic Plains. 2019. Islam, S., Gathala, M.K., Tiwari, T.P., Timsina, J., Laing, A.M., Maharjan, S., Chowdhury, A.K., Bhattacharya, P.M., Dhar, T., Mitra, B.,Kumar, S., Srivastwa, P.K., Dutta, S.K., Shrestha, R, Manandhar, S, Sherestha, S.R, Paneru, P, Siddquie, N, Hossain, A, Islam, R,Ghosh, A.K., Rahman, M.A., Kumar, U., Rao, K. K., Gerard, B. In: Field Crops Research v. 238, p. 1-17.
  9. Application of remote sensing for phenotyping tar spot complex resistance in maize. 2019. Loladze, A., Rodrigues, F., Toledo, F.H., San Vicente, F.M., Gerard, B., Prasanna, B.M. In: Frontiers in Plant Science v. 10, art. 552.
  10. 10. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. 2019. Xia Yang, X., Yubo Pan, Singh, P.K., Xinyao He, Yan Ren, Lei Zhao, Ning Zhang, Cheng Shun-He, Feng Chen In: BMC Plant Biology v. 19, art. 153.
  11. Is labour a major determinant of yield gaps in sub-Saharan Africa?: a study of cereal-based production systems in Southern Ethiopia. 2019. Silva, J.V., Baudron, F., Reidsma, P., Giller, K.E. In: Agricultural Systems v. 174, p. 39-51.
  12. Stakeholders prioritization of climate-smart agriculture interventions: evaluation of a framework. 2019. Khatri-Chhetri, A., Pant, A., Aggarwal, P.K., Vasireddy, V.V., Yadav, A. In: Agricultural Systems v. 174, p. 23-31.
  13. Effect of crop management practices on crop growth, productivity and profitability of rice-wheat system in western Indo-gangetic plains. 2019. Sharma, P.C., Datta, A., Yadav, A.K., Choudhary, M., Jat, H.S., McDonald, A. In: Proceedings of the National Academy of Sciences India Section B – Biological Sciences v. 89, no. 2, p. 715-727.
  14. Economic benefits of blast-resistant biofortified wheat in Bangladesh: the case of BARI Gom 33. 2019. Mottaleb, K.A., Velu, G., Singh, P.K., Sonder, K., Xinyao He, Singh, R.P., Joshi, A.K., Barma, N.C.D., Kruseman, G., Erenstein, O. In: Crop Protection v. 123, p. 45-58.
  15. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. 2019. Sitonik, C., Mahabaleswara, S.L., Beyene, Y., Olsen, M., Makumbi, D., Kiplagat, O., Das, B., Jumbo, M.B., Mugo, S.N., Crossa, J., Amsal Tesfaye Tarekegne, Prasanna, B.M., Gowda, M. In: Theoretical and Applied Genetics v. 132, no. 8, p. 2381-2399.
  16. Sub-Saharan african maize-based foods: processing practices, challenges and opportunities. 2019. Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V., Linnemann, A. In: Food Reviews International v. 35, no. 7, p. 609-639.
  17. Provitamin A carotenoids in grain reduce aflatoxin contamination of maize while combating vitamin A deficiency. 2019. Suwarno, W.B., Hannok, P., Palacios-Rojas, N., Windham, G., Crossa, J., Pixley, K.V. In: Frontiers in Plant Science v. 10, art. 30.
  18. The 4th International Plant Phenotyping Symposium. 2019. Reynolds, M.P., Schurr, U. In: Plant Science v. 282, P. 1.
  19. Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. 2019. Patra, S., Julich, S., Feger, K., Jat, M.L., Jat, H.S., Sharma, P.C., Schwärzel, K. In: Soil and Tillage Research v. 192, p. 151-163.
  20. Effects of crop residue retention on soil carbon pools after 6 years of rice-wheat cropping system. 2019. Sharma, S., Thind, H.S., Singh, Y., Sidhu, H.S., Jat, M.L., Parihar, C.M. In: Environmental Earth Sciences v. 78, no. 10, art. 296.
  21. 21. How to increase the productivity and profitability of smallholder rainfed wheat in the Eastern African highlands?: Northern Rwanda as a case study. 2019. Baudron, F., Ndoli, A., Habarurema, I., Silva, J.V. In: Field Crops Research v. 236, P. 121-131.
  22. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: providing low-cost, smallholder friendly solutions to an invasive pest. 2019. Harrison, R., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U., van den Berg, J. In: Journal of Environmental Management v. 236, p. 121-131.
  23. Preliminary characterization for grain quality traits and high and low molecular weight glutenins subunits composition of durum wheat landraces from Iran and Mexico. 2019. Hernandez Espinosa, N., Payne, T.S., Huerta-Espino, J., Cervantes, F., González-Santoyo, H., Ammar, K., Guzman, C. In: Journal of Cereal Science v. 88, p. 47-56.
  24. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. 2019. Dechorgnat, J., Francis, K.L., Dhugga, K., Rafalski, A., Tyerman, S.D., Kaiser, B.N. In: BMC Plant Biology v. 19, art. 206.
  25. CGIAR Operations under the Plant Treaty Framework. 2019. Lopez-Noriega, I., Halewood, M., Abberton, M., Amri, A., Angarawai, I.I., Anglin, N., Blummel, M., Bouman, B., Campos, H., Costich, D.E., Ellis, D., Pooran M. Gaur., Guarino, L., Hanson, J., Kommerell, V., Kumar, P.L., Lusty, C., Ndjiondjop, M.N., Payne, T.S., Peters, M., Popova, E.,Prakash, G., Sackville-Hamilton, R., Tabo, R., Upadhyaya, H., Yazbek, M., Wenzl, P.  In: Crop Science v. 59, no. 3, p. 819-832.

CIMMYT scientists join fellow experts in San Diego for world’s largest plant and animal genomics conference

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) presented last week at the International Plant and Animal Genome Conference (PAG) in San Diego, USA.

PAG is the largest agricultural genomics meeting in the world, bringing together over 3,000 leading genetic scientists and researchers from around the world to present their research and share the latest developments in plant and animal genome projects. It provides an important opportunity for CIMMYT scientists to highlight their work translating the latest molecular research developments into wheat and maize breeding solutions for better varieties.

To meet global food demand by 2050, agricultural production must increase by 60% — while at the same time minimizing harm to the environment. This is the process of sustainable intensification, recommended by organizations like the United Nations and the EAT Lancet Commission as a key strategy for transforming our struggling global food systems.

Genomics is crucial to sustainable intensification. By studying a plant or animal’s genetic architecture, researchers can better understand what drives crop or livestock productivity, quality, climate resilience, and resistance to pests and diseases. With this information scientists can speed up efforts to develop better varieties and stay ahead of climate- and disease-related threats.

Philomin Juliana stands next to the logo of the PAG conference. (Photo: CIMMYT)
Philomin Juliana stands next to the logo of the PAG conference. (Photo: CIMMYT)

At the conference, wheat scientist Philomin Juliana shared her findings on successfully identifying significant new chromosomal regions for wheat yield and disease resistance using the full wheat genome map. Juliana and her colleagues have created a freely-available collection of genetic information and markers for more than 40,000 wheat lines which will accelerate efforts to breed superior wheat varieties. She also discussed the value of genomic and high-throughput phenotyping tools for current breeding strategies adopted by CIMMYT to develop climate-resilient wheat.

Principal scientist Sarah Hearne discussed the smarter use of genebank exploration for breeding. Germplasm banks are reserves of native plant variation representing the evolutionary history of the crops we eat. They are a vital source of genetic information, which can accelerate the development of better, more resilient crops. However, it is not easy for breeders and scientists to identify or access the genetic information they need. Using the whole genebank genotypic data, long-term climate data from the origins of the genebank seeds and novel analysis methods, Hearne and her colleagues were able to identify elite genetic breeding material for improved, climate resilient maize varieties. They are now extending this approach to test the value of these data to improve breeding programs and accelerate the development of improved crops.

Distinguished scientist Jose Crossa discussed the latest models and methods for combining phenomic and genomic information to accelerate the development of climate-resilient crop varieties. He highlighted the use of the Artificial Neural Network — a model inspired by the human brain — to model the relationship between input signals and output signals in crops. He also discussed a phenotypic and genomic selection index which can improve response to selection and expected genetic gains for all of an individual plant’s genetic traits simultaneously.

Sarah Hearne presents on the smart use of germplasm banks to accelerate the development of better wheat and maize varieties. (Photo: Francisco Gomez)
Sarah Hearne presents on the smart use of germplasm banks to accelerate the development of better wheat and maize varieties. (Photo: Francisco Gomez)

Principal scientist Kanwarpal Dhugga gave a presentation on approaches to improve resistance against maize lethal necrosis (MLN) in Africa. MLN is an aggressive disease that first appeared in Kenya in 2011, devastating maize production. It has since spread to neighboring countries. Under a grant from the Bill & Melinda Gates Foundation, Dhugga and his colleagues at CIMMYT and Corteva Agriscience have identified a small genomic region explaining more than 50% of variation in MLN resistance. They are currently validating a few candidate genes in this region. Once done, they will use gene editing directly in elite lines from eastern Africa to accelerate the development of improved, disease resistant maize hybrids.

Genomic breeder Umesh Rosyara demonstrated the genomic selection pipeline and other tools at a workshop using the online Galaxy software. Galaxy is an open-source software that allows users to access powerful computational analysis tools. The CGIAR Excellence in Breeding Platform (EiB) has set up an instance of Galaxy that contains a suite of bioinformatics analysis tools, R-packages — a free software environment for statistical computing and graphics — and visualization tools to manage routine genomic selection (GS) and genome wide association studies (GWAS) analysis. This allows crop breeders and genomic scientists without a programming background to conduct these analyses and create crop-specific workflows.

“PAG is currently the main international meeting touching both crop and livestock genomics, so it’s an invaluable chance to connect and share insights with research and breeding colleagues around the world,” said Hearne. “It’s also an important forum to highlight how we are linking upstream and field, and help others do the same.”

Kanwarpal Dhugga (left) takes a selfie with his colleagues in the background during the PAG conference. (Photo: Kanwarpal Dhugga/CIMMYT)
Kanwarpal Dhugga (left) takes a selfie with his colleagues in the background during the PAG conference. (Photo: Kanwarpal Dhugga/CIMMYT)